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ABSTRACT 

Radial Quantization of the massive Majorana fermion representation of the 

Ising model is developed to study the connection between Integrals of the Motion 

due to two-dimensional kinematics and non-critical Virasoro algebras. In the path 

integral approach to quantization, conserved charges arise as line integrals of fixed 

radius over the radial component of conserved currents. This formulation reduces 

to the analytic conformal field theory in the zero mass limit. Virasoro algebras 

constructed as bilinears of the fermion mode operators are spectrum generating 

with c = f; however they are charges with non-local associated currents densities. 

Virasoro charges with associated local currents densities are constructed ; they 

are similar to the scaling regime lattice Virasoro algebra current densities of 

Itoyama and Thacker constructed for the (Ising)‘/XY model, however they are 

not spectrum generating, i.e. they have central charge c = 0. The Virasoro 

charges with local currents are imbedded in a larger algebraic structure which 

includes the integrals of the motion constructed by Zamolodcbikov for this model. 

The physical origin of this algebraic structure is the conservation of the entire 

momentum distribution, including the ‘angular momentum’ associated with the 

Euclidean angular rotation operator. Further applications of this technology are 

discussed. 
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1. Introduction 

The Virasoro algebra (VA) present in two-dimensional conformal field theo- 

ries has powerful implications. As shown by Belavin, Polyakov, and Zamolod- 

chikov[l] , Virasoro null vector constraints determine correlations of minimal 

conformal fields. Clearly the origin of the Virasoro structure is the infinite di- 

mensional conformal symmetry of two dimensions. However, it is not necessary 

to have this conformal symmetry to have the Virasoro structure; this algebraic 

structure is not confined to the critical point. It was first noted by Itoyama and 

Thacker[2] that in the context of integrable lattice models[3] , the logarithm of 

the extended corner transfer matrix behaves as the central element Lo of a VA . 

They were later able to explicitly construct a full Lattice VA for the (Ising)‘/XY 

model, with a corresponding set of local current densities in the scaling regime. 

There are two questions which immediately arise from the existence of non- 

critical VA structure. First, what is the connection between a non-critical VA and 

integrability in the usual sense, i.e. modes of the linear momentum distribution 

for a continuum field theory, or the transfer matrix of the lattice theory? For the 

Ising model it is shown in this paper that the VA’s with local currents can be 

embedded in a larger kinematical algebra which expresses the conservation of not 

just modes of linear momentum , but modes of the Euclidean angular rotation 

operator. So in this context is becomes likely that other integrable models will 

have local Virasoro currents. Secondly, given the VA structure, can some of the 

techniques so successfully implemented at criticality to solve for the S-matrix, and 

for correlation functions be transferred to the non-critical cases? For the Ising 

model we will see that the VA’s with local currents are not spectrum generating; 

i.e. c = 0. The representation theory of unitary Virasoro modules is therefore not 

applicable for these algebras; in particular the null vector equations do not apply. 

However in this paper, the c = i VA’s are also constructed from fermion b&nears. 

Their current densities are non-local and cannot be directly interpreted as being 

of kinematical origin. It is therefore less plausible that spectrum generating 
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Virasoro structure exists for other integrable models. However it is conceivable 

that it may still be the case, particularly in light of the Kyoto group expressions[4] 

of the local state probabilities of the restricted SOS models[5] in terms of unitary 

Virasoro characters. 

Zamolodchikov has considered the deformation of conformal field theories 

via relevant operators. Infinite sets of conserved local densities are constructed 

via detailed analysis of null vector relations[6] . The existence of non-trivial in- 

tegrals of the motion (IM) implies that the N-particle S-matrix factorizes into 

two-particle (elastic) scattering amplitudes. The two-particle S-matrix (the ‘R 

matrix) must obey the Yang-Baxter relations for the factorization to be consis- 

tent. 

Another intriguing connection between integrable systems and conformal field 

theory has been made recently in the context of the quantum group U(G) asso- 

ciated with the Lie algebra G. Originally introduced to describe the solution to 

the non-critical Toda field theories[7] , their Clebsh-Gordon coefficients (the q-Sj 

symbols) are also basis vectors of the Wess-Zumino-Witten conformal blocks[S]. 

Furthermore, in the context of the Sine-Gordon (SG) model, it has been argued[9] 

that the representations of U(su(2)) which describe the minimal conformal se- 

ries [lO]also describe the restricted 72 m&x of the SG model. A final example 

which is closest to what will be discussed below is the connection between the 

Temperley-Lieb algebra and U(su(2)) of the XX2 Hamiltonian, and Virasoro 

representations and the Feigen-Fuchs construction of the minimal conformal se- 

ries[ll]. 

This paper considers another approach to understanding of the underlying 

structure behind conformal field theories and non-critical integrable systems, 

namely the existance and implications of a non-critical Virasoro algebra. In 

particular, we shall consider the scaling limit of the Ising model represented by 

the Majorana field ‘3 = ($) with action* 

* Throughout the complex coordinate E = z1 + iz, = vsie with flat metric gzz = f is used. 
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I: = 2 
I 

- - 
d2z @+ + @li, + 2mi& (1.1) 

The mass term is a real energy perturbation e = $$. The mass is related to 

inverse temperature p and lattice spacing a as [12] 

where Z’, is the critical temperature. Clearly as p + PC and a -+ 0 the mass 

remains finite. 

In section 2 the model will be quantized via Ward identities which follow 

from the path integral approach, such that the analytic structure of the radial 

quantization at criticality is a smooth limit of the formalism. Section 3 begins 

by considering the non-critical VA’s constructed of fermion bilinears with c = t. 

The element L$ + L, is the generator of scale transformations, accompanied by 

a shift in scale factor m. The analysis leads to Virasoro IM’s .G’C, Ld’ff and 

their non-commuting conjugate algebras, with conserved current densities and 

central charge c = 0. All four algebras share the same element Lo, the generator 

of Euclidean rotations. They are the Ising model version of the Lattice VA’s 

found for the (Ising)2/XY model in the scaling regime by Itoyama and Thacker 

[13]. In particular, the algebras Ldiff are the generators of diffeomorphisms of 

the fermion rapidity cylinder, which is the continuum limit of the lattice rapidity 

torus. The larger symmetry algebra of IM’s which contains both the VA’s and 

the IM’s found by Zamolodcbikov for this model is constructed. 
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2. Radial Quantization 

The fermion operator product expansion (OPE) $I&, = l/(z - w) + ... 

at criticality is equivalent to postulation of the cannon&d anti-commutation 

relations for the massless Majorana fermions. As is weil known, this OPE can 

be derived from the path integral formulation by demanding that the quantum 

theory is invariant with respect to the h&morphic or anti-holomorphic variations 

of the fermion. In this section the analysis is generalized to the massive case. 

Begin the path integral formulation by noting the action is invariant with respect 

to an infinite set of variations 6$ = E and 64 = F, which satisfy the linear 

constraints 

&-ims=o, 

ac+imc=o. 
(2.1) 

At criticality these constraints reduce to holomorphic or anti-h&morphic sari- 

ations. Let E = (;). A basis satisfying the constraints, which reduces to the 

conformal case, is given by the solutions to the equations of motion* 

E+ = r(n + 1) 

m” 
( 

einer,(2mr) z” 

n 
-;eib+l)@rn+1(2mr) ,I0 0 ’ 

> (i 

E- = r(n + 1) 

( 

ie-i(“+‘)01”+~(2mr) 4 0 
” 772” eFine1,(2mr) > ~0 m=O p ’ 

Ef 
Zm”+’ 

-@+I) = r(n + 1) 
( 

e-i(n+l)eKn+l 2mT) ( ) Lo (“y), (2.2) 

ie-i”e.K,(2mr) 

2m”+’ 
E7=+1) = qn. + 1) 

( 
eiI.:i;;J;;:T,) Lo ( z-:+l)) 9 

* As in the critical case we include solutions in the region C - (0) - {cm). 
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where n = 0, 1, . . . ; and for the antiperiodic sector, 

E:-+ = 
qn + $) 

mn-+ 

E- = r(, + +) ieCi(n+b)eI,+~(2mr) 
(2.3) “--i m”-+ e-i(n-+)eIn-t(2mr) 

where n E 2. The 1~ and K, are standard modified Bessel functions. The 

antiperiodic sector is the mode expansion for a fermion in the presence of a 

background order operator located at the origin. The above functions satisfy 

@EA = mZEx, where X is integer or half integer. Under the derivative operator 

8, E: -+ XEtml (X # 0), and Ez --t -imE;; (X + 1)E; + m2E;+1 (X # -l), 

and EI, + imEf,. Similarly for the operator 3, Ex + XEi-l (X # 0), and 

EC + imE:; (X + 1)X: -t m’E,f,, (X # -l), and ET1 -+ -imET,. The 

functions take eigenvalues under the generator of Euclidean rotations 

(2.4) 

which are given by ME: = (X + +)E: and ME; = -(X + ;)Er. 

At the classical level, Noether’s theorem generates the currents (J,,Ji) sat- 

isfying aJ, + aJ2 = 0. Let Q = (z) and it’s conjugate rE = qTq. The Noether 

currents are explicitly given by J, = qfia,E and JZ = %uzE for each function E, 

where 6. = gzi(cq - iq). The conserved charge in a given region A is the line 

integral Q = Jdl .j, about A. The choice of contour is dictated by the eigen- 

functions E which satisfy (2.1). Because (2.2) and (2.3) are eigenfunctions of 

the Euclidean angular rotation operator (2.4) (and not of the linear momentum 

operators) the conserved charges will have eigenvalues under (2.4) if we choose 

line integrals of fixed radius about the origin - Q = ~~rdOrJ’, where J’ is the 

radial component of the current density. This expression for the charges clearly 

reduces to analytic contour integration about the origin in the zero mass limit. 
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For current densities bilinear in spinors A and B , charges are expressed as 

the inner product : Q = (A, B), where 

W=&j y-dO,(e~ie ‘;)i? (2.5) 

For the Noether currents given above, Q: = $(Efel, ‘I’). The eigenfunctions 
1 

(2.2) and (2.3) are orthonormal with respect to (2.5) 

(E:,E;) = JA+x, 

(ET, E,) = 0 
(2.6) 

That these relations are valid for arbitrary radius T is due to two Wronskian 

formulas for the modified Bessel functions 

L(z)Kv+l(z) + L+l(z)Kv(z) =1/z, 

L(z)l-(,+1)(z) - lv+~(~)K-y(z) = - 2sin(v)/rz. 
(2.7) 

The first(second) of equations (2.7) applies to the periodic(anti-periodic) sector. 

These properties continue in the critical limit, where they follow for analytic 

contour integration from Cauchy’s theorem. 

The mode expansion in each sector is given as 

* = c Q:Ef(,++) + Qi-Q,;, x 
cm 

The functions E-(,+;) diverge at T = 0 for X 2 0 and at 7 = 00 for X < 0. 

However, the fermion field should be defined at every point on the complex 

plane, so that b&ears representing physical observables are well defined. In the 

quantum theory, the coefficients Qx are operators acting in a Hilbert space. The 

fermion field can be made well defined in the quantum theory by the introduction 
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of highest weight vacuum states IO) and (01 at the points zero and infinity such 

that 

Q: IO) = 0, X 2 0, 

(OlQ:=O, A<0 

Asymptotic states are defined as fields evaluated at T = O(incoming) and T = m 

(outgoing) as in the critical case. The generators of translations and rotations are 

particular bilinear operators which have zero expectation values in the presence of 

the vacuum states. These operators shall be given explicitly in the next section. 

Radial ordering of the fermion modes for composite operators is sufficient to 

enforce the vanishing of these expectation values; this is clear by analogy with 

the critical theory. Radial ordering is also consistent with the angular symmetry 

of the analysis. Hence the vacuum structure is essentially equivalent to the 

conformal case; the addition of mass is an integrable perturbation away from the 

critical point. 

Commutation relations follow from the assumption that Sll, = E is an exact 

symmetry of the quantum theory. Consider variation of the one point function 

in the path integral 

0 = 6(!P(w,ti)) . (2.10) 

Two terms, the explicit variation of the field 9 and the variation of the effective 

action, contribute. The measure is assumed invariant with respect to these syme- 

tries. The variation of the action contributes a divergence of the Noether current 

integrated over the punctured plane C - {w). This has support at the boundary 

which is defined as the contours C> = (1~1 + Ici)e’a and C, = (Iwl - jsI)e’s , for 

small e, which excises the point w while preserving rotational symmetry (see fig. 

1). Then with this choice of boundary (2.10) implies the Ward identity 

E:(w,ti) = ~~(.(~,ti)J:(~,@)) . 
(2.11) 

This is the integral form of Gauss’s law for the current JA. Multiplication of 

(2.11) by E,’ T(w,ri?) and integration over 9, about the origin, with measure 



factor to form the inner product (2.5) , results in the anti-commutation relations 

{Q:,Q$> = sA+xl, 

{Qf,QZ> = 0. 
(2.12) 

Radial ordering and the Grassman property of fermions has been assumed. 

Propagators follow from the anticommutation relations (2.12) and the highest 

weight conditions (2.9) in the periodic sector: 

(Nz,4$(0,0)) = m(4z)fG(mr), 
(li;(+ W(O,O)) = imKo(mr), (2.13) 

(~(z,Z)lj(O,O)) = rn(Z/Z)~Kl(rnT). 

They are normalized with respect to the vacuum amplitude (011 IO) = 1. 

3. Virasoro Algebras and Local Current Densities 

In this section the Virasoro Algebras with local current densities are derived 

and their properties are discussed. The most important results are that they 

have central charge c = 0 and a kinematical interpretation. Consider the normal 

(radial) ordered bilinear operators 

L~=~C(n-X+t):Q:Q~-~): 
x 

(3.1) 

These are the spectrum generating Virasoro algebras with central charge c = + 

in both the periodic (X E Z + +) and anti-periodic (X E Z) sectors. At criticality, 

they are contour integrals over local currents zn+‘Tzz and z”+‘Z’~~ . In the non- 

critical case, can these operators be written as L = (~,CN!), where ( , ) is the 

inner product (2.5) and 0 is a local operator? If this is the case, then associated 
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local current densities are J, = Gcrz,09 and fz = %uiCN. Consider for example 

Lof in the periodic sector. It can be rewritten as 

Lo+ = ;(V,M 2 Q;+;E~~~+~)) p=-CC 
(3.2) 

where the definition of Qz+! , and the properties of (2.4) have been applied. 

When the corresponding res:lt for L, is subtracted from this result, then by 

completeness (2.8) the sums in the bilocal expression add up to yield the fermion 

*: 

L; -L, = f(‘P,M9) (3.3) 

As expected, L$ - L, is the generator of Euclidean angular rotations. It is also 

possible to evaluate the sum of the two operators in this way, because m& has 

simple properties when acting on the functions (2.2) and (2.3). 

L,+ + L, = +, [Tg -g-p, 

This is the broken scale invariance of the model, which is still a useful symmetry 

for the calculation of order operator correlators[l4]. The Hilbert space of fermion 

operators described in the previous section is graded under this operator in the 

sense that fermion modes with positive eigenvalue under Lc + L; are lowering 

operators and annihilate the vacuum IO) , etc. Both (3.3) and (3.4) are also valid 

in the anti-periodic sector. Other remaining Poincare currents 2”” = ;$u+~,,$J 

have integrals of the motion which are combinations of a Virasoro operator and a 

fermion bilinear which vanishes for zero mass. For example in the periodic sector 

1 m 5 I Tdo(e’eT” + eeieTfz) = -2LT, + m2 C ~Q;+i~;ecq+i) (3.5) 
-ca P#O 

Consider the expression (3.1) for Lz where 71 is positive and the fermions 

are in the periodic (X = p + t) sector. Each Q+ n-@+f) can be rewritten as an 
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inner product (2.5) between fermion and function E,++1). The operator M + i 

acting on J??,+_(~+~) generates the n-p coefficient in the expression (3.2). Is there 

a local operator 0 which maps E~vCq+lJ to EfCq+l)? If such an operator exists 

then we have half of the completeness relation (2.8) in the expression for L,+. 

Only a corresponding albeit possibly non-trivial expression of the Q,, modes is 

needed , as in the Poincare case (3.5), to apply completeness and subsequently 

form a local expression. 

In the critical case, mapping E&q+l) to EzCq+,) is achieved by multiply- 

cation by z-“. In the non-critical case for the periodic sector this cannot be 

accomplished in general because this requires the existence of a local operator 

which converts modified Bessel functions of type K~,(mr) to type IA,( There 

do however, exist operators which map functions .Ex to other EA, of the same 

type: {a, 2,8, Z}, where 

2=&M-+)8 

2 = $(-M - +)a 
(3.6) 

Under the action of the operator 2, El + XEl+, (A # -l), and Et1 -+ 0; 

7dEi -+ -X’Ei-_, (X # 0), and -imE; + E$. Similarly for the operator 

Z,Ey + XEx+l (X # -l), and EI~ + 0; m2E: --t -X2E~ml (A # 0), and 

imE$ -+ EC. These relations are valid in both periodic and anti-periodic sectors. 

Acting on the fermion, [a,2]* = g, simil~ly for B and 2. Note that a and Z 

do not commute unless m = 0. 

Let 9 = *+ + ‘l!‘- where ‘l!‘+(W) contains only the E+(F) eigenfunctions. 

This is a non-local decomposition unless m = 0. In this case the local operators a, 

and ~2 project onto chirality. The variation 6,,+‘3!‘+ = [L$, *‘+I can be expressed 

in the periodic sector as 

6,+ ?T+ =z”+lalE+ + :[a, 2”+‘]@ n 

+ k[i(n + 1) - (4 + l)lQ;+tEn+_cq+l) , 
q=o 

(3.7) 
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and in the anti-periodic sector 

6Lt T!+ = 2”+‘N!+ + +[a, 2”+‘]9+ (3.8) 

valid for n 1 -1. Hence the operator 2 behaves very much like the coordinate 

z. (The extra terms in (3.7) are due to the annihilation of ET1 when acted upon 

by 2.) Below, the operators (3.6) are used to solve the local Virasoro currents 

problem. 

pc = 2n+la 
n , 

pnc = p+1a 
, 

l$ff = (-y+‘z, 
(3.9) 

[$ff = (@)“+lz 

It is clear from the above analysis that there exist a large set of charges 

with local conserved current densities which are bilinear in fermion fields: 2’” = 

-;(S,l,rk) where the operator t, = f{a, 8, M, I} is any smooth function of the 

arguments. In particular four Virasoro Algebras can be constructed which are of 

the form L, = -;(*,I,*): 

The LF Algebras are clearly the scaling regime IM’s with local charges which cor- 

respond to the critical algebras that generate spacetime diffeomorphisms. They 

are formally defined for n 2 -1 in the periodic sector because 2 has no inverse 

(since ZE-, - + - 0) and for all n in the antiperiodic sector, although the inverse 

of 2 is non-local in this case. The [tff algebras are defined for all n in both 

sectors, where the local inverse of -8 is - $8 (similarly for a). They are the 

scaling regime IM’s with local currents which correspond to the critical algebras 

that generate momentum space diffeomorphisms. These algebras are the gener- 

ators of diffeomorphisms of a complex rapidity cylinder, as will be shown below. 

The commutation relations are determined via the identity 

[L”, &I = -t(s, [kz,M*) (3.10) 

This implies that the central charge for these algebras is zero. The proof is 

12 



by construction. Required are integration by parts properties stated as follows : 

For conserved charge (A, B) with corresponding conserved current densities, and 

operator 0 = {a, 8, M), then (A, OB) = -(DA, B). 

First consider the periodic sector. In the periodic sector the central charge 

vanishes since the LF contain no pairs of raising or pairs of lowering operators 

; i.e. neither 8, or 2 can convert raising to lowering. To make this statement 

concrete, define operators B, l? : 

B 
P++ = Q;+,lr(p + I)> B-tp+fj = Q,tm2p+1/ir(p + 1), 

‘-(P++) = Q’,,+$(P + I), jp+$ = Q,;ir(p + ~)/&P+I 

(3.11) 

where p 2 0. The B modes all annihilate the conformal ‘in’ vacuum while 

the i modes sll annihilate the ‘out’ vacuum. They have non-vanishing anti- 

commutation relations {BP+;, jq++) = 6,+,+r. Define functions F, 5 : 

F~ = E,+/rb + I), F++,) = E;dP+lpyp + I), 

b+1) = Efb+,)r(p + 11, Fp = E;+;iqP + l)lm2P+1 
(3.12) 

where p 2 0. They have the nice properties aF, = F,,-l and aj,, = j”,_r 

Vn E Z , and non-vanishing inner products (Fn,pp) = 6,,+p+r. The fermion can 

be written as 

97 = c qP+;)qP+q + qP+;)F-(P+l) . (3.13) 
P 

The utility of this basis is observed when the expression Lp is evaluated: 

L:: = c ~ln-(q+;)B~q+;)(F~q-“),I~~-Fi_(q+~)) 
Q 

(3.14) 

Note the crucial fact that no normal ordering symbol is required since the B’s(L?‘s) 

are all annihilation (raising) operators. The Virasoro generators (3.14) are for- 

mally like the Virasoro generators of a holomorphic Dirac fermion without normal 
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ordering. (For such a Dirac fermion , the central charge c = 1 is due entirely to 

this normal ordering.) Hence by explicit computation one finds 

[L:t-%l = c ~n+m-(q+f)B(q+~)(F(q--“--m), [L,M~-;-(q+q) (3.15) 
P 

This analysis can be reproduced for the Lcff algebras in the periodic sector. 

In the antiperiodic sector the central charge cancels between the Q+ and Q- 

contributions. This is most easily seen by defining 

0,’ = m2PQ1,a/P(p + ;) (3.16) 

The algebra LF is then given by 

L::=L,+-tC(-n-p+5):Op+Q+“-p: 
P 

(3.17) 

Hence Lz is of the form L, = Li - LZ, , where L$ and L; are commuting 

algebras with c = 5, and the central charge cancels between the two algebras. 

Similar analysis shows that the central charge also vanishes for Leff . 

The rapidity cylinder appears via the integral representations of Bessel func- 

tions : 

P~,(~TTw) =$ 
I 

d-r Tem=‘7r”, 

(3.18) 

The contours of integrations over the complex variable y are shown in fig. 2a-2~. 

The contour Cr is about the unit circle, C,(e) is from the origin to infinity in 

the direction ~TQY = r + 9 , and Ca(O) is about the unit circle and around the 
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square root branch cut terminating at the origin. The contours depend upon 6’ 

as to make .z. -y E zy-1 + ~7 damp the exponent at the origin and infinity, which 

are essential singularities. The rapidity cylinder is the argument of y . In the 

periodic sector define two ‘ chiral ’ fermions in terms of the B,2 modes (3.12) 

XP = ~Bq+k/(-m)q+'~q+', 
P 

2.p = c iq+;/(+?n)q+‘yq+l. 

4 

The fermion in the periodic sector can be written as 

~=J~em~-r(_:~)~p(~)+J~e~‘.~(:7)~~(7) (3.20) 

C, C2 

In this representation it is clear that the L diff algebras are diffeomorphisms of 7 

since P+’ maps to -r-I”+‘) in rapidity space. The non-critical periodic fermion is 

represented by a periodic, holomorphic Dirac fermion with non-standard normal 

ordering. In the anti-periodic sector define the ‘ chiral ’ fermions 

x; =-yQ.p(-nf $nq+5/r'I+1, 
4 

xi =CQ,l?(-n+ +Q+f/p+' 
P 

(3.21) 

In terms of these two anti-periodic massless majorana fermions, the Ising fermion 

can be written as 

(3.22) 

G 

It is reasonable to conjecture that the the algebras (3.9) are the lattice Virasoro 

algebras of Itoyama and Thscker in the scaling limit, for the Ising model. 
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These Virasoro Algebras are clearly a subset of an Extended Algebra Enpq = 

(9 ,e,,,Q) where enpq = a”@Ms. Some interesting subsets are En00 and Eopo, 

which commute with the Hamiltonian. Their physical interpretation is that for 

this model, all modes of left and right light-cone momentum are conserved in a 

scattering process. They are the continuum analog of lattice row-row transfer 

matrices. Similarly, Eooq implies that all modes of Euclidean angular rotation 

operator are conserved. They commute with the logarithm of the corner transfer 

matrix L$ - L,. Since the integrals of motion constructed by Zamolodchikov[G] 

have similar kinematical interpretations they are expected to lie in the set {E,,w}. 

For this model the operators Tz,, are given as 

Tan %?$'-'$a;$: (3.23) 

and satisfy &Tzn = B,Qs,,-r . The conserved IM’s of these currents are Ep,-,po. 

All of the mentioned integrals of the motion can be thought of as arising from 

2-dimensional kinematics, in a general sense. Of course the differentiation be- . 
tween kinematical and dynamical symmetry depends upon the choice of initial 

hypersurface; kinematical symmetries preserve the form of the initial hypersur- 

face. For each of the classes of IMs Enoo, Eopo and Eooq hypersurfaces can clearly 

be selected so that they are kinematical. For general Enpq , construction of such 

a surface is not obvious, however it is probably intuitively correct to think of 

these as of kinematical origin likewise. The underlying structure is the simplicity 

of the relativistic Poincare algebra in two dimensions. 
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4. Discussion 

The non-critical Virasoro structure with local currents is clearly imbedded in 

a larger algebra which is of lcinematical origin. The factorization of the S-matrix 

into a product of two-particle amplitudes is probably necessary and sufficient 

for this algebra to appear since the larger algebra generically appears in two 

dimensional elastic scattering. In this context, the connection between the Sine- 

Gordon/ MKdV quantum IMs and the Virasoro generators[l5] is of great interest. 

Whether the non-critical radial quantisation of section 2 can be achieved 

for more non-trivial models is clearly an open question. A particularly promis- 

ing class are the Z,, parafermion (PF) models of Zamolodchikov and Fateev[lB] 

which describe the antiferromagnetic critical behavior of the ABF [5] restricted 

SOS models. The point of such quantisation is to extract as much non-trivial 

information from the critical point where a model can be solved via powerful con- 

formal techniques and then to move away from criticality in a relatively simple 

way. 

This paper has focused on the c = 0 Virasoro IMs with local currents. 

However the c = 5 spectrum generating VAs must place constraints on corre- 

lation functions; as in the critical case, null vector constraints are non-trivial. It 

has been shown by McCoy and Perk [1’7] that the Painleve V equation, a sec- 

ond order nonlinear differential equation satisfied by the Ising model two spin 

correlators in the scaling regime, reduce to the level two null vector equation 

[Lzl - ;L-z]la) = 0, where /u) isth e scaling dimension l/8 conformal field. It 

would clearly be of interest to determine if the same null vector equations for 

the non-critical spectrum generating VAs yield this nonlinear equation. This is 

not inconsistent with the linearity of the null vector equations because L!2 is 

non-local. Such analysis begins with the definition of the local operator product 

structure of the Ising system in the scaling regime, determined purely from its 

critical properties[l8]. It should be mentioned that there already exists a beau- 

tiful formulation of spin correlation functions for the Ising model in the scaling 
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regime due to the Kyoto group[l9] b ased on isomonodromic deformation theory. 

However, even at the critical point this analysis does not generalize to the Z,, 

PF series because of degeneracy in monodromy between PF highest weights and 

parafermions. 

I would like to thank H. Itoyama, H. Riggs, G. Savvidy, C. Wendt and par- 

ticularly H. Thacker for enlightening conversations. 
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Figure Captions 

Fig. 1 : Boundary of integration C, - C, for Noether currents. 

Fig. 2 : Contours for integral representations of modified Bessel functions. 
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